Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space.

نویسندگان

  • M E Rice
  • G A Gerhardt
  • P M Hierl
  • G Nagy
  • R N Adams
چکیده

Diffusion coefficients of catecholamine neurotransmitters, their metabolites and related species was measured in brain extracellular fluid using in vivo voltammetric techniques. Nanoliter volumes of the species were pressure-ejected into the rat caudate nucleus and their concentration profiles were determined at nearby voltammetric detector electrodes. Thorough testing was carried out to show that the present methodology gave results which agreed with brain diffusion coefficients measured previously by ion-selective microelectrode techniques. All of the species which are anionic at pH 7.4 have brain diffusion coefficients about one-third of their solution counterparts in accord with earlier studies of diffusion in tortuous media. However, the brain diffusion coefficients of all the cation species are about three-times slower than those of the anions. This phenomenon is believed to be caused by ion binding with the polyanionic glycosaminoglycans and related species in brain tissue. In vitro model experiments lend support to this interpretation. This new information on biogenic amines and their metabolites provides meaningful predictions of the spatio-temporal concentration distribution of these species in the extracellular fluid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glial cells and volume transmission in the CNS.

Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically d...

متن کامل

Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume.

Brain extracellular space (ECS) is an interconnected channel that allows diffusion-mediated transport of signaling molecules, metabolites, and drugs. We tested the hypothesis that β-adrenergic receptor (βAR) activation impacts extracellular diffusion-mediated transport of molecules through alterations in the morphology of astrocytes. Two structural parameters of ECS-volume fraction and tortuosi...

متن کامل

Extracellular apparent diffusion in rat brain.

The apparent diffusion coefficients (ADCs) of a series of markers concentrated in the extracellular space of normal rat brain were measured to evaluate, by inference, the ADC of water in the extracellular space. The markers (mannitol, phenylphosphonate, and polyethylene glycols) are defined as "compartment selective" because tissue culture experiments demonstrate some leakage into the intracell...

متن کامل

Volume transmission and receptor-receptor interactions in heteroreceptor complexes: understanding the role of new concepts for brain communication

The discovery of the central monoamine neurons not only demonstrated novel types of brain stem neurons forming global terminal networks all over the brain and the spinal cord, but also to a novel type of communication called volume transmission. It is a major mode of communication in the central nervous system that takes places in the extracellular fluid and the cerebral spinal fluid through di...

متن کامل

Fast Optical Tracking of Diffusion in Brain Extracellular Space

1. Introduction Extracellular space (ECS) surrounds neurons and glia cells of the brain. This labyrinth filled with cerebro-spinal fluid provides an environment in which signaling and nutrient molecules diffuse. Diffusion is thus very important for the brain's well being and its measurement can provide important clues about the brain function under normal conditions and in certain pathological ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 1985